
NASA-CR-201_O0

ACTIVE MINIMIZATION OF ENERGY
DENSIW IN THREE-DIMENSIONAL
ENCLOSURES

Summary of Research
Dec. 1993 - Dec. 1995

PrinciDal Inv_tiaator
Scott D. Somme_

Dept. of Physics& _ronomy
Brigham Young University
Provo, UT 84602

and

Applied Research Laboratory
The Pennsy_a State University
P.O. Box 30 _ .
State College, PA 16804

NASA Grant N0.: NAG-l-1557

June 18, 1996



ACTIVE MINIMIZATION OF ENERGY DENSITY

IN THREE-DIMENSIONAL ENCLOSURES

Summary of Research
Dec. 1993- Dec. 1995

Scott D. Sommerfeldt

(Principal Investigator)

Dept. of Physics & Astronomy

Brigham Young University

Provo, UT 84602

and

Applied Research Laboratory

The Pennsylvania State University
P.O. Box 30

State College, PA 16804

NASA Grant No. NAG-l-1557

June 18, 1996



Table of Contents

List of Figures .............................................................. ii

List of Tables ............................................................... v

I. Introduction ............................................................. 1

2. Summary ............................................................... 2

3. Background and Program Objectives .......................................... 3

4. Results of the Study ....................................................... 5

4.1 Theoretical Development ............................................. 5
4.2 Numerical Model and Results .......................................... 7

4.2.1 Multiple Sensor Results ...................................... 13

4.3 Experimental Verification ............................................ 20

4.3.1. Energy Density Sensor ...................................... 20

4.3.2 Control Algorithms ......................................... 23

4.3.3. Experimental Results ....................................... 24

4.3.4. Results Using Multiple Sources and/or Sensors .................... 31

5. Conclusions and Recommendations For Future Energy Density Control Research ........ 35

6. References .............................................................. 37



List of Figures

Figure 1. Potential energy in the enclosure. -- no control; --- potential energy; ......

squared pressure; .... energy density ....................................... 8

Figure 2. Attenuation of potential energy in the enclosure. -- no control; --- potential

energy; ...... squared pressure; .... energy density .............................. 9

Figure 3. Attenuation of the potential energy in the enclosure, when minimizing the

potential energy ....................................................... 9

Figure 4. Attenuation of the potential energy in the enclosure, when minimizing the squared

pressure at 10 different locations ......................................... 11

Figure 5. Attenuation of the potential energy in the enclosure, when minimizing the energy

density at 10 different locations .......................................... 11

Figure 6. Spatial dependence of the relative level (dB) of the acoustic field for the (1,0,0)

mode (88.9 Hz): a) Pressure; b) Energy density .............................. 12

Figure 7. Spatial dependence of the relative level (dB) of the acoustic field for the (2,1,0)

mode (210 Hz): a) Pressure; b) Energy density .............................. 12

Figure 8. Relative sound pressure level in the z = 0.8 m plane: a) No control; b) Potential

energy minimized; c) Squared pressure minimized; d) Energy density minimized ...... 14

Figure 9. Relative sound pressure level in the z = 1.0 m plane: a) No control; b) Potential

energy minimized; c) Squared pressure minimized; d) Energy density minimized ...... 15

Figure 10. Potential energy in the enclosure with one control source, located at

(.501,.501,.501). (upper) no control; (lower) potential energy;

- - - squared pressure; ...... energy density ................................... 16

Figure 11. Potential energy in the enclosure with two control sources, located at

(.501,.501,.501) and (.251,.501,.330). -- (upper) no control; -- (lower)

potential energy; --- squared pressure; ...... energy density ...................... 16

Figure 12. Potential energy in the enclosure with three control sources, located at

(.501,.501,.501), (.251,.501,.330), and (.831,.345,.831). -- (upper) no control;

-- (lower) potential energy; --- squared pressure; ...... energy density ........... 17

Figure 13. Potential energy in the enclosure with one error sensor, located at

(.751,.501,.501). (upper) no control; (lower) potential energy;

--- squared pressure; ...... energy density ................................... 18

ii



Figure

Figure

Figure

Figure

Figure 18.

Figure19.

Figure20.

14. Potential energy in the enclosurewith two error sensors,located at
(.751,.501,.501)and (.256,.256,.751). -- (upper) no control; -- (lower)
potentialenergy;--- squaredpressure;......energydensity...................... 18

15. Potential energy in the enclosurewith three error sensorslocated at
(.751,.501,.501),(.256,.256,.751)and(.241,.313,.781).-- (upper)no control;
-- (lower) potentialenergy;--- squaredpressure;......energydensity ........... 19

16. Schematicof theenergydensitysensorprobe............................. 21

17. Schematicof theelectronicsfor eachmicrophonein theenergydensitysensor.... 21

Calibrationchamberusedto calibratetheenergydensityprobe................ 21

Measuredfrequencyresponseof theenclosure............................ 25

Predictedsoundpressuredistributionfor theplanez = 0.76m. (88.9Hz - (1,0,0)
mode) ............................................................. 26

Figure21. Experimentalsoundpressuredistributionfor the planez = 0.76m. (88 Hz -
(1,0,0)mode)........................................................ 26

Figure22. Predictedsoundpressuredistributionfor theplanez = 1.28m. (88.9Hz - (1,0,0)
mode) ............................................................. 27

Figure23. Experimentalsoundpressuredistributionfor theplanez = 1.28m. (88 Hz -
(1,0,0)mode)........................................................ 27

Figure 24. Predictedsoundpressuredistributionfor the planez = 0.25 m. (166.3Hz -
(1,1,0)mode)........................................................ 28

Figure25. Experimentalsoundpressuredistributionfor theplanez = 0.25m. (170 Hz -
(1,1,0)mode)........................................................ 28

Figure 26. Predictedsoundpressuredistributionfor theplanez = 1.28m. (166.3Hz -
(1,1,0)mode) ........................................................ 29

Figure27. Experimentalsoundpressuredistributionfor the planez = 1.28m. (170Hz -
(1,1,0)mode)........................................................ 29

Figure28. Predictedandmeasuredattenuationsof theglobalpotentialenergy ............ 30

Figure29. Predictedsoundpressuredistribution:z = 0.43m,88.9Hz, (1,0,0)mode,2 error
sensors,2 controlsources .............................................. 32

°°°

111



Figure 30. Experimental sound pressure distribution: z = 0.43 m, 90 Hz, (1,0,0) mode, 2

error sensors, 2 control sources .......................................... 32

Figure 31. Predicted sound pressure distribution: z = 0.67 m, 88.9 Hz, (1,0,0) mode, 2 error

sensors, 2 control sources .............................................. 33

Figure 32. Experimental sound pressure distribution: z = 0.67 m, 90 Hz, (1,0,0) mode, 2

error sensors, 2 control sources .......................................... 33

iv



List of Tables

Table 1.

Table 2.

Table 3.

Numerical vs. Experimental Resonance Frequencies for the Enclosure ............ 25

Potential Energy (dB) in the Enclosure With and Without Control ............... 30

Global Potential Energy in the Enclosure (89 Hz) ........................... 34

V



ACTIVE MINIMIZATION OF ENERGY DENSITY

IN THREE-DIMENSIONAL ENCLOSURES

I. Introduction

In many applications involving noise in enclosures, the desired control objective is to

globally minimize the noise in the enclosure, or to at least minimize the noise over some extended

region. Such applications include interior noise in aircraft, automobiles, and rooms. For a regularly-

shaped enclosure, such as a rectangular enclosure, it is possible to analytically determine the optimal

solution for a control source(s) which will minimize the total potential energy in the enclosure, as

has been demonstrated by Nelson et al. 1 The effect of minimizing the potential energy is to

generally attenuate the overall sound pressure level throughout the enclosure. However, the total

potential energy is a quantity that is not available in practice, since it requires spatially integrating
the entire acoustic field.

The objective of this study was to further investigate and develop a novel approach for

actively controlling the sound field in enclosures that is based on the acoustic energy density.

Typically the acoustic field in an enclosure has been controlled by minimizing the sum of the

squared pressures from several microphones distributed throughout the enclosure. The approach

investigated in this study involved minimizing the acoustic energy density at the sensor locations,

rather than the squared pressure. Research previous to this study 2 in a simple one-dimensional

enclosure showed that improved global attenuation of the acoustic field is often obtained by

minimizing the energy density, rather than the pressure. The current study built on the previous

research by extending the method of controlling the acoustic energy density to three-dimensional

enclosures. The study was intended to help establish if improved control can still be expected in a

more general enclosure.

The study was designed to be both analytical/numerical and experimental in nature. The

numerical analysis provided valuable insights in guiding the experimental efforts. As part of the

experimental effort, a three-dimensional "energy density sensor" was developed and implemented

to test the control approach. The purpose of this summary report is to overview the results obtained

in the course of the study.



2. Summary

A study has been completed to examine the effectiveness of actively minimizing the energy

density in enclosures, as a means of achieving greater global control of the interior field. The

approach has been tested both numerically and experimentally in three-dimensional enclosures. It

should be noted that the focus of the study was on sensing issues, and not on actuator issues. As

such, little or no attempt was made in the research to optimize the number and locations of the

actuators used. The most significant results of the study can be summarized as follows:

i) It was demonstrated that it is possible to fabricate an inexpensive three-dimensional "energy

density sensor" that could be used both for active control implementation, as well as for a

general investigation of the acoustic field. This was significant, since at the onset of the

study, the only energy density sensor that had been developed was a one-dimensional sensor

that used two relatively expensive phase-matched B&K microphones. The low cost of the

current three-dimensional sensor makes potential practical implementations feasible.

ii) The numerical and experimental results confirmed the hypothesis that for a given number

of sensors, controlling the energy density generally provided global control of the field that

was as good as, and in most cases better than, the control achieved using pressure as the

acoustic quantity to be minimized. It should be noted that an energy density sensor consists

of multiple transducers (currently six microphones), so that this statement does not reflect

a comparison of transducers, but of error sensors.

iii) It was found that for multiple error sensors (i.e. N sensors), the control achieved using

energy density control was generally comparable to the control achieved using

approximately 6N pressure microphones, in the traditional manner. Thus, if one makes the

comparison based only on the number of transducers used, the differences were generally

not significant. However, the controller architecture is simpler with N energy density

sensors than 6N pressure sensors.

iv) It was also found that the global control achieved using energy density sensors was

considerably less dependent on sensor location than when using pressure sensors. This result

has important practical implications, since it suggests that the energy density sensors can

generally be placed wherever it is practical, without seriously affecting the control of the

field that will be achieved.
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3. Background and Program Objectives

The current research study reported here was precipitated by a prior study that was begun

in 1990 as a M.S. thesis project at The Pennsylvania State University 2. In this prior study, the
question was posed as to whether improved global attenuation could be achieved in an enclosed

acoustic field by minimizing the energy density, rather than the pressure. The decision to investigate

this approach was based on the observation that practical implementations for global control were

beginning to use large numbers of error sensors (i.e. ~ 50) to control interior acoustic fields. As a

result, it was desired to investigate possible approaches that would potentially reduce the number

of error sensors required. This prior study was restricted to one-dimensional fields to simplify the

investigation. The result of that study was that it was found that significant improvement in the

global control could be achieved by controlling the energy density. However, it was also recognized

that the one-dimensional field was somewhat lacking in generality, and thus it was desired to extend

the research to three-dimensional fields. As well, for the prior study, an energy density sensor was
developed that was suitable for one-dimensional fields, but was not suitable for three-dimensional

fields. In addition, the previous energy density sensor was rather expensive, which potentially made

practical implementation somewhat prohibitive. Nonetheless, the prior study was very successful

in terms of developing the control approach for minimizing energy density 3, as well as in

demonstrating the basic proof of concept.

Following the prior study, it was desired to extend the concepts developed to three-

dimensional fields, which is the basis of this current study. In this phase of the study there were

several restrictions and objectives. The study was restricted to a study of low modal-density

acoustic fields, which corresponds to the lower frequency range. It is important to keep this

restriction in mind when analyzing the results, since different control mechanisms can be expected

for high modal-density fields vs. low modal-density fields. An additional restriction in this phase

of the research was that the number of actuators was restricted to be less than or equal to the number

of error sensors. It is possible to implement more actuators than sensors, but that requires

modifications to the control system to remove the indeterminacy that normally results. It is

envisioned that future research will remove this limitation. Finally, since the focus of the research

was on sensing issues, little or no attempt was made to optimize either the number or the locations

of the control actuators. Rather, the problem was simply posed as: Given the actuator configuration,

what is the best control that can be achieved by minimizing either the energy density or the

pressure?

In view of the previous restrictions, there were a number of objectives that the study was

designed to accomplish. It was desired to develop a three-dimensional energy density sensor that

was practical for implementation. The sensor would need to be able to accurately determine the

energy density quantities of interest, and would also need to be relatively inexpensive to be practical

for many implementations. It was also desired to gain a greater understanding of three-dimensional

acoustic fields and how the control system interacts with the field to achieve either global or local

attenuation of the field. Finally, a principle objective of the research was to compare the control that

could be achieved using energy density sensors with the control achieved using pressure sensors.

This comparison was made in one of two ways. One comparison was with equal numbers of sensor



sites,andtheothercomparisonwaswithequalnumbersof transducers.Thetwo comparisonsresult
from thefact that energydensitysensorsrequiremultipletransducersfor implementation.
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4. Results of the Study

4.1 Theoretical Development

For an active control application, the acoustic field in a rectangular enclosure can be thought

of as consisting of two components: the pressure due to the primary source(s), and the pressure due

to the secondary source(s). In general, the control that can be achieved in the enclosure will depend

on the location of the sources, the location of the error sensors used, and the choice of the

performance function chosen for the control system. As mentioned previously, the purpose of this

project was to compare the control that can be achieved using several different performance

functions, for a given arbitrary source and sensor configuration. As a result, for the results shown

below, there has been no attempt to optimize any of the source or sensor locations. The focus is

simply to compare the performance that can be realized for a given configuration. This corresponds

to the situation that often occurs in practice, where one has limited control over the possible

locations for sources and sensors. Given this objective, for this theoretical development a single

primary source and a single control source are also assumed to simplify the notation.

The pressure field in the rectangular enclosure can be represented in terms of the modes of

the enclosure as

p(Z) : (a,, + • (1)
N=O

Here, N denotes a triple sum over the indices (1, m, n) corresponding to the x-, y-, and z-directions.

The functions tIJN correspond to the eigenfunctions of the enclosure, Q designates the complex

control source strength, and the coefficients A s and BN are the modal coefficients associated with

the primary field and the secondary control field, respectively. (The source strength of the primary

source is included in the AN coefficients.) The objective of the active control system is to optimize

the value of the source strength, Qc, so as to minimize a chosen performance function.

In this work, three different performance functions for the control system were investigated

to compare their global performance. The first performance function corresponds to the global

potential energy in the enclosure. This function was suggested by Nelson, et al. 1, since it provides

a global measure of the energy in the field. While this approach is attractive for analytical work, it

is problematic for experimental implementation, due to the lack of appropriate sensors to obtain a

global measure of the potential energy. The second performance function investigated corresponds

to the squared pressure at a discrete location(s). This is the approach most often taken in practice,

and corresponds to minimizing the pressure magnitude at discrete points in the enclosure. While

this approach lends itself well to experimental implementation, it often leads to the production of

localized zones of silence, rather than the broad global attenuation often desired. The third

performance function investigated corresponds to minimizing the total energy density at a discrete

location(s). This approach also makes use of a local measurement, but the measurement of energy

density potentially yields more global information than is obtained from a pressure measurement.



Thesethreeperformancefunctionscanbeexpressedas:

p2
= -- dV

J_ f xpc _
V

1

J_, : _ p:(_,)
i=1

I p2(._i) P
Jed = E -- + -- V(Xi)'V(Xi ) "

i=l 2pc 2 2

(2)

Here, the subscript pe refers to potential energy, the subscript p refers to the squared pressure, and

the subscript ed refers to the energy density, and I indicates the number of error sensors used.

Using the expression for the pressure given in Eq. (1), these three performance functions can

be minimized to yield the optimal control source strengths. The results of this minimization can be

expressed as4:
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Looking at these three control results indicates that controlling the energy density would give
the same controlled field if

(4)
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This equality is not true in general,but the resultsobtaineddo confirm that the control source
strengthobtainedby minimizingtheenergydensitygenerallymorecloselyapproximatesthesource
strengthfor minimizingtheglobalpotentialenergythanwhenminimizingthe squarepressure.

4.2 Numerical Model and Results

One of the major accomplishments of the study has been the development of a model of the

control approach. This model has aided greatly in developing a better understanding of the control

mechanisms associated with controlling the energy density. The model is based on a modal

representation of the interior field. With this representation, the acoustic pressure can be represented

as a summation of the modes, and related quantities such as the global potential energy and the

energy density can also be represented in terms of the acoustic modes. The enclosure used in the

model corresponds to a rigid rectangular enclosure, with dimensions 1.93 m x 1.22 m x 1.54 m.

These dimensions correspond to an enclosure at The Pennsylvania State University that was used

for experimental verification of the results. The resulting expression for the modes of the enclosure

is given by

tl]N(._i) = COS i lltxi tony i

I
(5)

where L_, L_ L, are the dimensions of the enclosure along the three axes.

The numerical model allows the user to specify the number of modes to be included in the

model. It was found empirically that retaining one thousand modes in the model yields convergence

for the modal summations. (Retaining two hundred modes produces results within about 1 dB of

the converged solution, and was otten used to quickly obtain general results.) The model also allows

the user to specify the dimensions of the enclosure, the damping coefficient, and the locations of the

sources and sensors. Any number of sensors and sources can be used, with the current limitation

that the number of sensors must be greater than or equal to the number of sources. It is planned to

modify the model in the future to be able to remove this restriction.

To look at the effect of controlling the energy density rather than the squared pressure, there

are several ways in which one can analyze the results. A global measure of the control is given by

the potential energy in the enclosure, both before and after the control is applied. Thus, one of the

options with the model is to determine the potential energy in the enclosure as a function of

frequency for the cases of no control, minimizing the potential energy (which can be done

numerically, but not experimentally), minimizing the squared pressure, and minimizing the energy

density. The case of minimizing the potential energy is often considered to be the optimal result,

since it represents the least amount of global energy in the enclosure. Figure 1 shows a typical result

obtained from the model for determining the potential energy as a function of frequency in the

enclosure. For these results, a single primary source was arbitrarily located at (x,y,z) = (0.1,0.4,0.4),

a single control source was located at (x,y,z) -- (1.4,1.0,1.0), and the error sensor was located at
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(x,y,z) = (1.2,0.6,0.6). As mentioned previously, no attempt was made to optimize these locations.

From these results, it can be seen that minimizing the potential energy yields the lowest global

energy, as is to be expected. However, minimizing the energy density at the single point chosen

yields potential energy results that are comparable to minimizing the potential energy at most of the

frequencies shown here. On the other hand, minimizing the squared pressure leads to an increase

in the global potential energy in the enclosure at most frequencies. This can be seen more clearly

in Figure 2, which shows the attenuation in the potential energy that is achieved using each of the

three control approaches. The negative values of attenuation at most frequencies for the squared

pressure control indicate an increase in the energy in the enclosure, while controlling the energy

density provides attenuation of the global field that approximates the control of potential energy

reasonably well.

An additional insight that was obtained through use of the model was the sensitivity of the

control achieved on the error sensor location with the various methods. Since the global potential

energy represents an integration of the potential energy density over the entire enclosure, the control

achieved by minimizing the potential energy does not depend on sensor location. For reference, the

attenuation achieved with this method is shown in Figure 3. If one chooses to minimize the squared

pressure or energy density, the attenuation achieved generally depends on error sensor location. To

investigate this, ten sensor locations were chosen along a line through the enclosure that roughly
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corresponds to a diagonal through the enclosure. (Points exactly along the diagonal were not used

to avoid any potential anomalies in the results.) Figure 4 shows an overlay of the ten attenuation

curves as a function of frequency for the ten sensor locations when minimizing the squared pressure.

It is apparent that there are wide discrepancies in the attenuation achieved as the sensor is placed at

different locations. Figure 5 shows the same results for the case of minimizing the energy density.

It can be seen that the attenuation achieved when minimizing the energy density also depends on the

sensor location, but the attenuation achieved is significantly more uniform with sensor location when

minimizing energy density than when minimizing squared pressure. Most of the curves for

minimizing the energy density tend to conform reasonably well with the attenuation achieved when

minimizing the global potential energy. These results suggest that if one is constrained in where the

sensors can be located, there will be a greater probability of achieving near optimal control by

minimizing energy density than by minimizing squared pressure.

Some insight into the reasons for the behavior described previously can be obtained by

considering the spatial dependence of the modes in the enclosure, both in terms of pressure and in

terms of the energy density. If one considers a single mode to be dominant, the squared pressure

in the field can be expressed approximately as

[p(r-)_ : cos2(kxx) cos2(kyy) cos2(kzz) (6)

where the amplitude of the mode has been normalized to unity. In this expression, kx = m rc/L_., ky

= nrc/L_, and kz = lrc/Le. Similarly, the energy density in the field can be expressed as

1 [k_ sin2(kx x) cos2(kyy) cos2(kzz)w = cos_(kxx) cos2(kyy) cos2(k_z) + _-i

2 2 sin2(k z)]+ k_cos2(kxx) sin2(kyy) cos2(kzz) + k z cos (k_x) cos2(kyy)

(7)

In terms of the pressure field, there are nodal planes that exist wherever the cosine functions go to

zero. Thus, for the (m,n,l) mode, there will be a total ofm+n+l nodal planes that represent locations

where the error sensors will be unable to detect the dominant mode, and poor control results can be

expected. However, if one is minimizing the energy density, the spatial variability of the energy

density field is significantly different. For example, for an axial mode (where, for example n and

l are zero) the energy density will be uniform throughout the enclosure, and the control achieved will

be nearly independent of error sensor location. For the cases of tangential and oblique modes, an

investigation of Eq. (8) reveals that instead of having nodal planes, as in the case of the pressure

field, there are now nodal lines that occur at the intersection of two pressure nodal planes. As a

result, the regions &the enclosure that represent poor sensor locations are much more restricted for

the energy density field than for the pressure field. This spatial dependence can be seen in Figure

6 for the case of an axial mode, and in Figure 7 for the case of a tangential mode. Given this

difference in spatial dependence, it can be seen that there will be noticeably less sensitivity to error

sensor location when minimizing the energy density, rather than the squared pressure. It should be

mentioned that these results may be modified to some extent when there are multiple significant

10



ol_dW" I |_I1 I

_/_)II_
 -,ol/If
_--_°r'I V.......

_ ott.........,.............v
-40 I , t

50 100 150 200 250 300 350 400
Frequency (Hz)

Figure 4. Attenuation of the potential energy in the enclosure, when

minimizing the squared pressure at 10 different locations.

-20 ......................................... :.............. : ................... :
D_

-30 ...................................................... ............. ! ................. :

I I I I

-4050 1O0 150 200 250 300 350 400

Frequency (Hz)

Figure 5. Attenuation of the potential energy in the enclosure, when

minimizing the energy density at 10 different locations.

11



1

0.8

_,o.6!

0.4 i

0.2

% 0.2 0.4 0.6 0.8 1

a) yJl_x

0.2 0.4 0.6 0.8 1

b) _Lx

170

160

150

19.78

19.76

19.74

19.72

Figure 6. Spatial dependence of the relative level (dB) of the

acoustic field for the (1,0,0) mode (88.9 Hz): a) Pressure; b)

Energy density.

0.2 0.4 0.6 0.8 1

a) x/Lx

170

160

150

140

130

O.

>.O.E

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

b) x/Ix

20

15

10

5

0

Figure 7. Spatial dependence of the relative level (dB) of

the acoustic field for the (2,1,0) mode (210 Hz): a)

Pressure; b) Energy density.

12



modes contributing to the field, since the multiple modes can combine in such a way as to create a

local minimum in either the pressure or the energy density, even if the sensor is not on a nodal
surface of the modes.

In addition to looking at the global potential energy as a function of frequency, it is also

possible with the model to investigate the spatial dependence of the pressure and energy density

fields for a given frequency. This is useful for investigating the field that results using the various

control approaches, and identifying features such as localized areas of attenuation and effects due

to good or poor source/sensor locations. It is conceivable that two control methods could result in

the same global energy within the enclosure, but that the spatial dependence of the field may be

more desirable with one approach than the other. This feature of the model allows the user to

investigate these issues.

As an example of the spatial dependence of the acoustic field, consider the resonance peak

located at 166 Hz in Figure 1, which corresponds to the (1,1,0) mode. It can be seen that under these

conditions, minimizing the squared pressure leads to a significant increase in the potential energy

in the enclosure, even though the pressure at the error sensor is significantly attenuated. On the

other hand, minimizing the energy density or the global potential energy leads to a reduction of the

total potential energy in the enclosure in the range of 11-14 dB. Figures 8 and 9 show the relative

sound pressure level for two different cross-sectional planes of the enclosure, given by y = 0.8 m and

y = 1.0 m. For the (1,1,0) mode, the error sensor (located aty = 0.6 m) is near the nodal plane of the

mode given by y = 0.61 m. As a result, if the squared pressure is controlled, the error sensor is

largely incapable of detecting the dominant mode in the enclosure, and as a consequence, the control

solution results in a general increase in the sound pressure levels throughout the enclosure. The

effect of the control is to attenuate secondary modes, while amplifying the already dominant mode.

On the other hand, since the energy density control approach is also sensitive to velocity components

of the modes, it is capable of detecting the dominant mode in the enclosure, and yields a much more

satisfactory solution. It can also be seen that the spatial dependence of the pressure field when

minimizing the energy density is similar in nature to the spatial dependence when minimizing the

global potential energy. There are, however, some differences, which leads to the difference in
overall attenuation of about 3 dB.

4.2.1 Multiple Sensor Results:

As part of the numerical research, the use of multiple control sources and/or sensors was

investigated. The one limitation was that the number of sensors was constrained to be greater than

or equal to the number of sources. The results that were obtained were not unexpected and

confirmed results obtained by others in terms of minimizing the squared pressure in the enclosure.

The results do, however, provide some interesting insight into the issue of controlling the energy

density vs. controlling the squared pressure.

An example of using multiple sources is shown in Figures 10-12. For these results, twelve

randomly located microphones were used for minimizing the squared pressure, while three energy

density sensors (located at the first three microphone locations) were used for minimizing the energy

density. Figure 10 shows the results using a single (poorly located) control source, while Figure 11
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shows the results for two control sources, and Figure 12 shows the results for three control sources.

Also, in these figures, dimensions given are normalized by the dimensions of the enclosures. For

the case of the single control source, it can be seen that very little control can be obtained, since the

normalized source location of (.501,.501,.501) corresponds to a nodal location for almost every

mode of the enclosure, such that the control source is unable to excite the required modes. Figures

11 and 12 indicate that as the number of sources is increased, improved control can be expected.

In fact, for this configuration, one can see that three control sources (effectively two control sources)

are capable of providing reasonable control at nearly all of the frequencies shown. It can also be

seen that the amount of attenuation achieved by minimizing the energy density at three energy

density sensors is very comparable to the attenuation achieved by minimizing the squared pressure

at twelve sensors, and that both methods reasonably approximate the attenuation that can be

achieved by minimizing the global potential energy. Since an "energy density sensor" requires

multiple sensors, the total number of sensors required for three energy density sensors is comparable

to the twelve pressure sensors used. However, from a control perspective, there are still significant

advantages to minimizing the energy density, since there are fewer error signals to be minimized,

which reduces the complexity of the control system. In addition, the results obtained indicate that

minimizing the energy density is significantly less sensitive to error sensor location.

Figures 13-15 provide representative results for changing the number of error sensors. For

these results, a single control source located at (.711,.851,.330) is assumed, and the number of error

17
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sensors is varied from one to three. Figure 13 shows the results obtained for a single sensor location.

It can be seen that there are a number of frequencies where minimizing the squared pressure leads

to an increase in the global potential energy, due to the poor location of the sensor for those

frequencies. On the other hand, with just a single energy density sensor, one already achieves

control which approximates minimizing the global potential energy at most frequencies shown here.

Adding a second sensor (Figure 14) leads to improved performance in terms of minimizing the

squared pressure, but there are still a number of frequencies that cannot be effective controlled.

There is also some improvement in terms of minimizing the energy density, but the improvements

are not very dramatic, since even a single energy density sensor provided rather good results.

Adding a third sensor (Figure 15) continues this trend, with some improvements in terms of

minimizing the squared pressure, and very little difference in terms of minimizing the energy

density.

In conclusion, the results of the numerical research have indicated that from a sensor

perspective, if one has a fixed number of sensor sites, one can nearly always achieve better

performance by minimizing the energy density than by minimizing the squared pressure. However,

since an energy density sensor requires multiple sensors, it is also reasonable to look at this issue

in terms of an equal number of sensors used, rather than sensor sites. If this comparison is made,

the results indicate than one will generally achieve about the same amount of global attenuation

when minimizing the energy density as when minimizing the squared pressure. However, as pointed
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out earlier,whenminimizingthe energydensity,thereis still the advantagethat the attenuation
achievedisnot assensitiveto sensorlocation. Aswell, sincetherearefewererror signals,thereis
apotentialto achievereducedcontrollercomplexityfor the implementation.

4.3 Experimental Verification

An important part of the research consisted of developing the algorithms and hardware

necessary to be able to experimentally verify the numerical results. The rectangular enclosure used

for this study existed previously and consisted of a rectangular plywood box of dimensions 1.93 m

x 1.22 m x 1.54 m. The plywood walls consisted of 19 mm (3/4") plywood, which was reinforced

with a grid of braces on the exterior surfaces. The primary sound field was generated using a single

Bose 101 loudspeaker, and an additional Bose 101 loudspeaker(s) was used for the secondary

control source(s).

To investigate the spatial dependence of the acoustic field, an array of nine Lectret 1207A

microphones were mounted on a boom that could be traversed throughout the enclosure to measure

the acoustic field. The levels at each microphone location were recorded, from which the three-

dimensional dependence of the field could be determined.

Two control approaches were implemented experimentally: minimization of squared

pressure, and minimization of energy density. To implement these methods required the

development of a three-dimensional "energy density sensor", as well as the control algorithms. Each

of these will be discussed in some detail.

4,3,1, Energy Density Sensor

To implement the approach of minimizing the energy density, it is necessary to not only

sense the acoustic pressure, but also to sense the acoustic particle velocity. Several possible

approaches were investigated for sensing the particle velocity. The approach that was finally used

consists of using finite differences with two closely spaced microphones in each of the three

orthogonal directions, in the same spirit as is used to measure acoustic intensity. This approach

follows directly from Euler's equation, given as

v.(n) - -1 ap-p-f--d,,Oxm

f
(8)

where Axm is the spacing between two closely spaced microphones in the Xm direction.

It was desired to develop a relatively inexpensive probe to measure the energy density, since
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Figure 16. Schematic of the energy density sensor probe.

it would be undesirable for any practical implementation to rely on expensive phase-matched pairs

of microphones. This was accomplished using six Lectret 1207A microphones that were flush

mounted in a 5.1 cm wooden ball 5, as shown in Figure 16. The three pairs of microphones were

mounted on opposite sides of the sphere, so as to be able to estimate the three orthogonal

components of the particle velocity. This type of spherical probe has been discussed previously by

Elko 6, and was shown to have favorable characteristics with respect to the finite difference and finite

sum bias errors. The inside of the wooden ball was hollowed out, and a small circuit board was

mounted inside the ball. Six noninverting pre-amplifiers were mounted on the circuit board to buffer

the outputs from the microphone and to provide voltage gain. The amplified signals from the six

microphones are transmitted by means of a shielded cable to a second set of noninverting amplifiers

located outside of the enclosure. These amplifiers have variable resistors associated with them that

allow the gains of the amplifiers to be adjusted for microphone calibration purposes. A schematic

of the electronics associated with each microphone can be seen in Figure 17.

Each of the six microphones was calibrated by placing each microphone into one side of a

small calibration chamber, along with a B&K Type 4133 microphone, as shown in Figure 18. The

gain for the microphone was then adjusted so that the output level was 50 dB higher than that of the

B&K microphone. The result of this process was that the microphones were all calibrated to provide

an output of 1 Vrms @ 94 dB re 20_tPa at 100 Hz. The Lectret microphones were found to provide

a stable, linear response up to levels greater than 110 dB re 201aPa, with a flat phase and amplitude

response. The phase response is within +1 ° at 100 Hz for all six microphones, and is within that

range for all frequencies of interest above 100 Hz.

With the energy density probe, the three pairs of microphones could be used to provide the

finite difference estimation of the pressure gradient in Eq. 8. To obtain the velocity components,
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it isalsonecessaryto performa time integration of the pressure difference. This has been done both

digitally and with an analog circuit, and both methods perform acceptably. However, it was found

that generally, the digital integration tended to provide a more stable signal. For the results

presented here, a digital integration scheme was implemented, in accordance with the work

presented by Hodges, et al. 7 With this approach, the six microphone signals are input to the DSP

board, where the average of the six pressure signals is used as an estimate of the pressure at the

sensor location, and the time integration of the pressure differences in each direction is used to

obtain the particle velocity components, as given in Eq. 8.

4.3.2 Control Algorithms

For both control methods, the control algorithm was based on the filtered-x LMS algorithm,

developed by Widrow and Stearns 8. With this control approach, the control filter is represented by

an adaptive finite impulse response (FIR) filter that is updated at each time iteration, based on the

measured error signals. For the method of minimizing the squared pressure, the filter coefficients

are updated according to

wi(n + 1) : wi(n ) - lae(n)r(n-i) , (9)

where w,(n) represents the ith coefficient of the control filter at the discrete time n, p is a

convergence parameter chosen to maintain stability, eO0 is the error signal (pressure) measured at

the error microphone, and r(n) is the filtered reference signal, obtained by passing the reference

input signal through the transfer function from the controller output to the error sensor input. The

last term in the update equation represent the negative gradient of the performance function (squared

pressure). For the method of minimizing the energy density, the filter coefficients are again updated

according to the negative gradient of the performance function. However, with the performance

function now being the energy density, the update equation now takes the form of 3

lc )wi(n+l ) = wi(n)- _ _ pvm(n)r_m(n-i)+ --£p(n)rp(n-i) . (10)
m=l _

In this equation, m = 1,2,3 corresponds to the x-, y-, z-direction, respectively, vm is the velocity in

the m direction, rv,,O0 is the filtered reference signal obtained by passing the reference input signal

through the transfer function from the controller output to the velocity component in the m direction

at the error sensor, and rp(n) is the filtered reference signal obtained by passing the reference input

signal through the transfer function from the controller output to the pressure at the error sensor.

For both methods, the update equation used required the reference input signal to be passed

through one or more transfer functions from the controller output to the error sensor. This requires

implementing a model of the required transfer function(s) within the controller, through which the

reference input signal can be passed to obtain the necessary filtered reference signal(s). These

transfer functions can either be measured a priori and stored in the DSP board, or they can be
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estimated in real-time. For this work, the transfer functions were estimated in real-time, using the

method developed previously by Sommerfeldt 9.

4,3,3, Experimental Results

To determine how the response of the experimental enclosure compared with the numerical

results for the enclosure, one of the loudspeakers was placed in a corner of the enclosure, and a

microphone was placed in another corner to measure the frequency response of the enclosure. The

experimental response is shown in Figure 19. The resonance frequencies of the enclosure are in

good agreement with the numerical predications, as can be seen in Table 1. There are some

additional spectral peaks, for example at 51, 56.5, 147.5, 159, and 189 Hz, that do not match up with

predicted frequencies. It is thought that these frequencies are associated with resonance frequencies

of the enclosure walls, which are not completely rigid.

For these results, the two control schemes were each implemented and the acoustic field was

scanned over multiple horizontal planes. The results were then compared with the predicted results

obtained from the numerical model to compare the spatial dependence of the field and the overall

attenuation levels achieved. Several of the results obtained will be discussed here.

Some of the results obtained for an excitation frequency of 88 Hz (1,0,0 mode) can be seen

in Figures 20-23. These figures show both the numerical and experimental results for two of the

horizontal planes that were scanned. For the numerical results, the pressure field was determined

for the cases of no control, controlling the squared pressure, controlling the energy density, and

controlling the global potential energy. For these results, the error sensor was located at (0.96, 0.19,

0.76) m. This location represents a poor choice for the error sensor location when controlling the

squared pressure, since it is located very near to the nodal plane for the (1,0,0) mode. As a result,

the dominant mode in the enclosure is not observed by the control system, and the overall levels in

the enclosure go up when the control is implemented, even though the local pressure at the error

sensor is attenuated. This effect is apparent in both the numerical and the experimental results. On

the other hand, when the energy density is controlled, the energy density does not have a node at the

error sensor location. As a result, the controller is able to sense the dominant mode in the enclosure

without difficulty and achieve a global control effect. It can be observed from Figures 20-23 that

the general agreement for the spatial dependence &the field is quite good. The effect of controlling

the energy density for this frequency is to yield a pressure field that is relatively uniform throughout

the enclosure, and at a lower level than the uncontrolled field. It can also be seen from the numerical

predictions that the energy density control closely approximates the control that would be achieved

if one could minimize the global potential energy in the enclosure.

Figures 24-27 show the numerical and experimental results obtained for two of the horizontal

planes scanned with an excitation frequency of 170 Hz (166.3 Hz numerically). This frequency

corresponds to the (1,1,0) mode. For these results, the error sensor was located at (0.625, 0.615,

0.775) m. This location again represents a poor error sensor location for controlling the squared

pressure, since it is located near the nodal plane at y = 0.61 m As a result, the controller is not able
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Figure 19. Measured frequency response of the enclosure.

Table 1. Numerical vs. Experimental Resonance Frequencies for the Enclosure.

Mode Number

(1,0,0)

(0,0,1)

(0,1,0)

(l,O,1)

(1,1,o)
(2,0,0)
(0,1,1)

(1_1,1)

(2,0,1)

Numerical Frequency (Hz)

88.9

111.4

140.6

142.5

166.3

177.7

179.3

200.1

209.7

Experimental Frequency

(Uz)
88

111

139

142

170

182.5

182.5

199

207.5
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to observe the dominant mode when minimizing the squared pressure, and local attenuation at the

error sensor results with the level of the dominant (1,1,0) mode increasing throughout the enclosure.

On the other hand, when the energy density is minimized, the error sensor is able to sense the

dominant mode and attenuate its amplitude throughout the enclosure. It can be seen from Figures

24 and 25 for the z = 0.25 m plane that the residual acoustic field closely resembles the (2,0,0) mode,

which can be seen from Table 1 to be the residual mode whose resonance frequency is closest to the

excitation frequency of 170 Hz. It can again be seen that there is reasonable agreement between the

spatial dependence obtained experimentally and the spatial dependence predicted numerically.

The global potential energy in the enclosure can be determined by integrating the squared

pressure over the volume of the enclosure 5. For the case of the experimental results, this was

approximated by summing up the squared pressures from the measurement grid points, in this case

given as

Ep(dB) = 101ogl0 y_ p2(ix, iy, iz)dxdydz , (11)
ix=l ty=l tz=l

where dx = 0.1 m, dy = 0.11 m, and dz = 0.25 m. The results are shown in Table 2 for the (1,0,0)

and (1,1,0) modes, and the attenuation of the potential energy achieved is shown in Figure 28. For

the numerical results, the attenuation in the potential energy is shown for minimizing the squared

pressure, the energy density, and the potential energy. For the experimental results, the attenuation

is shown for controlling the squared pressure and the energy density. It can be seen that the

predicted trends are observed experimentally in both cases. The attenuation achieved when

controlling energy density and the amplification achieved when controlling the squared pressure is

not as large as predicted. It is thought that this may in part be due to the missing grid points along

the x-axis, due to the nature of the traversing mechanism. The largest reductions would be expected

to occur near the walls of the enclosure, so that these missing points could lead to the results

Table 2. Potential Enersy (dB) in the Enclosure With and Without Control.

Uncontrolled Squared Press. Energy Density Potential

Control Control Energy Control

Numerical:

(1,0,0) mode 12.6 18.4 0.3 0.3

(88.9 Hz)

(1,1,0) mode 12.3 22.6 9.6 8.4

(166.3 Hz)

Experimental:

(1,0,0) mode 3.1 3.9 -0.1

(88 Hz)
(1,1,0) mode 2.7 7.0 1.4

(17onz)
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Figure 28. Predicted and measured attenuations of the global potential energy.

observed. Nonetheless, the results do demonstrate that for these cases the minimization of energy

density leads to significantly improved global control of the acoustic field.

4.3,4. Results Using Multiple Sources and/or Sensors

Experimental results were also obtained for a number of multiple source and/or sensor

configuration, for comparison with numerical predictions. For the experimental results, both the

squared pressure and the energy density were used as acoustic variables to be minimized. Figures

29-32 show one example of typical results obtained for multiple source/sensor configurations. For

these results, the primary source is at a normalized location of (0.01,0.01,0.99) and excites the field

at a frequency of 89 Hz. There are two control sources, located at (0.99,0.01,0.99) and

(0.99,0.623,0.026), and two error sensors (either pressure or energy density), located at

(0.41,0.17,0.61) and (0.18,0.73,0.25). For both control methods, the predicted and measured

pressure fields were obtained for various horizontal planes in the enclosure. Figures 29 and 30 show

the predicted and measured results for the z = 0.43 m plane, while Figures 31 and 32 show the same

results for the z -- 0.67 m plane. It can be seen that the agreement between the numerical and

measured results is quite good. In addition, the method of minimizing the energy density more

closely approximates the field that one would obtain if the global potential energy is minimized.

Table 3 shows the global results obtained for the frequency of 89 Hz. Two different

configurations are represented in this table: one with a single control source, and one with two

control sources. Again there is reasonable agreement between the numerical and experimental

results.
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Figure 29. Predicted sound pressure distribution: z = 0.43 m, 88.9 Hz,

(1,0,0) mode, 2 error sensors, 2 control sources.
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Figure 30. Experimental sound pressure distribution: z = 0.43 m, 90 Hz,

(1,0,0) mode, 2 error sensors, 2 control sources.
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Figure 31. Predicted sound pressure distribution: z = 0.67 m, 88.9 Hz,

(1,0,0) mode, 2 error sensors, 2 control sources.
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Figure 32. Experimental sound pressure distribution: z = 0.67 m, 90 Hz,

(l,0,0) mode, 2 error sensors, 2 control sources.
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Table 3. Global Potential Energy in the Enclosure (89 Hz).

Uncontrolled Squared Press. Energy Density Potential

Control Control Energy Control

Numerical:

2 sensors, 95.0 86.6 85.0 84.0

1 source

2 sensors, 95.0 83.2 81.4 79.6

2 sources

Experimental:

2 sensors, 94.5 87.9 85.1

1 source

2 sensors, 94.5 86.2 83.5

2 sources
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5. Conclusions and Recommendations For Future Energy Density Control Research

Previous research on one-dimensional fields had indicated that significantly improved global

attenuation could be obtained by minimizing the acoustic energy density, rather than the squared

pressure. The research reported here has extended this prior research to three-dimensional fields.

Many of the same conclusions reached earlier are still applicable, but there are some complicating
factors that have arisen.

For a one-dimensional field, the energy density is constant throughout the field, and as a

result, there is not dependence on error sensor location when minimizing the energy density. For

a three-dimensional field, the energy density is not constant, and as a result, there is some

dependence on sensor location. However, the nodal surfaces associated with the energy density

represent a significantly smaller fraction of the enclosure volume, so that the method of minimizing

energy density is still significantly less sensitive to sensor location that for minimizing squared

pressure. This is an attractive feature of the approach for practical implementations, where it often

may not be possible to locate the error sensors in the optimal locations.

To actively minimize the energy density in the enclosure requires a sensor that allows one

to measure both the pressure and the particle velocity. This requires multiple transducers. One of

the results of this research is that a low-cost sensor has been developed that provides the information

necessary to implement the active control of energy density. The relatively low cost of the "energy

density sensor" makes the implementation of the approach practical for a number of applications,

including the active control of interior aircraft fields.

The active control of energy density has been examined both numerically and experimentally

in this research. It has been found that one can typically achieve global attenuation of the field when

controlling energy density that is at least as great as when controlling the squared pressure, and is

often greater. If one compares the results in terms of sensor sites, one can nearly always achieve

improved control using energy density with N sensors over using squared pressure with N sensors.

On the other hand, if one compares the results in terms of total number of transducers used, the

control achieved is generally comparable between the two methods when N transducers are used.

There are still several advantages to using energy density, however. The method of minimizing

energy density is much less sensitive to error sensor location. In addition, the possibility exists to

achieve greater simplification of the control system when minimizing the energy density.

This research has also pointed out a number of areas where additional research would be very

beneficial. Some of these additional research areas include the following:

i) The current "energy density sensor" used provides six pressure signals to the DSP board, and

the quantities required for control implementation are computed internally in software.

However, it became apparent that in addition to using energy density for control, significant

insights into acoustic fields could be obtained by looking at the energy density field, as

opposed to the pressure field. In this context, it would be very useful to modify the "energy

density sensor" so that the circuitry of the sensor itself resulted in an output proportional to
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themeasuredenergydensity. This would allow one to use the sensor to map acoustic fields

in terms of energy density.

ii) In many applications, there is some knowledge of the acoustic field that would make it

possible to modify the energy density sensor design to take advantage of that knowledge.

In this manner, it may be possible to simplify the sensor and perhaps reduce the total number

of transducers, without sacrificing the benefits of minimizing the energy density. For

example, if the sensor were placed near a hard surface, one could make the assumption that

the normal velocity component is very small, thereby reducing the number of velocity

components required by one.

iii) One of the findings of this research is that one otten does not achieve significant increases

in the global attenuation by adding additional energy density sensors beyond a certain

relatively small number. However, the control achieved also depends on the number of

control sources used, and one may typically achieve improved control by adding additional

actuators. Currently, the control system requires at least as many sensors as actuators for

proper operation. Thus, one objective of future research would by to modify the control

system to allow the user to have more control sources than error sensors. This will involve

the implementation of a constrained optimization procedure to overcome the overdetermined

nature of the control problem.

iv) The focus of this research project was on actively controlling acoustic fields at low

frequencies where one can assume a relatively low modal density. It would also be useful

to investigate the effectiveness of minimizing energy density for the high modal density

case. Preliminary analysis has indicated that one would achieve a local control effect, but

it is not certain how the extent of this control would compare to the control obtained when

minimizing the squared pressure under these conditions.
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